artificial transformation

 

Artificial competence can be induced in laboratory procedures that involve making the cell passively permeable to DNA, by exposing it to conditions that do not normally occur in nature. Typically, the cells are incubated in a solution containing divalent cations; most commonly, calcium chloride solution under cold condition, which is then exposed to a pulse of heat shock. However, the mechanism of the uptake of DNA via chemically-induced competence in this calcium chloride transformation method is unclear.

 

 

The surface of bacteria such as E. coli is negatively-charged due to phospholipids and lipopolysaccharides on its cell surface, and the DNA is also negatively-charged. One function of the divalent cation therefore, would be to shield the charges by coordinating the phosphate groups and other negative charges, thereby allowing a DNA molecule to adhere to the cell surface. It is suggested that exposing the cells to divalent cations in cold condition may also change or weaken the cell surface structure of the cells making it more permeable to DNA. The heat-pulse is thought to create a thermal imbalance on either side of the cell membrane, which forces the DNA to enter the cells through either cell pores or the damaged cell wall.

 

 

 

 

Transformation in prokaryotes by S.S, P.R & M.K